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bstract

In the present study, an artificial neural network (ANN) model and a theoretical model are established to predict the kinetic behavior of

lectrophoretic deposition (EPD). Both the theoretical model and the ANN model describe the kinetic behavior of EPD at a low-applied voltage
below 15 V) well. However, the theoretical model failed to predict the behavior at the higher applied voltages of 40 and 50 V. In contrast, the
roposed ANN model not only showed enhanced numerical accuracy, but was also generic to other operational conditions as well. Compared to
he theoretical model, the ANN model shows outstanding capability of predicting actual kinetic behavior.
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. Introduction

Various colloidal processes can form monolayer or multilayer
eramic materials. For example, slip casting [1] and tape-rolling
2] have been used for a long time. However, these processes
re limited to relatively simple shapes. Recently, electrophoretic
eposition (EPD) of ceramic powders has been successfully
pplied for various applications in the fields of superconducting
oating production [3–6], the manufacture of phosphor screens
7,8], and fuel cell creation [9–12].

EPD is a two-step process: first, the charged colloidal parti-
les in the suspension migrate to one of the electrodes under an
xternal electric field. This migration step involves the bulk prop-
rties of the colloidal suspension, such as conductivity, viscosity,
article concentration and dispersion, surface-charge density as
ell as the local field strength in the bath [13,14]. Second, the
eposition step involves a complex combination of electrochem-

cal and aggregation phenomena. Producing dense and coherent
eposit layers requires that the particles release their surface
harge at the electrode [15]. Although several efforts have been

∗ Corresponding author. Tel.: +886 6 2757575x63829.
E-mail address: kwchiang@mail.ncku.edu.tw (K.-W. Chiang).

w
s
S
r
t
b
e

378-7753/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2007.09.024
ade to investigate this process, there are still some unknowns
bout controlling the formation of EPD because many parame-
ers, which have a highly non-linear relationship between them,
eed to be considered [16]. Therefore, some assumptions that
implify the numerical solution of the problem are considered
ecessary to construct a proper model. However, assumptions
ould lead to a bias when comparing the model with the real
ystem, thus making practical application much more difficult.

Statistical design of experiments used for the optimization
f linear and non-linear systems allows the effects of several
ifferent factors to be analyzed and combined into a response
odel [17]. There are difficulties in symbolic and heuristic

nowledge processing when using traditional algorithmic pro-
ramming methods. An empirical method, called artificial neural
etworks (ANNs), has been used extensively by experts from
ngineering and science. The ANN can learn the system per-
ormance characteristics from existing data and then generalize
hat it has learnt [18–20]. Optimizing the network parameters,

uch as weights, can enhance the training rate and accuracy.
ince 1980, interest in neural network computing has grown

apidly. Neural networks have been widely used in the estima-
ion of the power system [21–32]. ANN is considered one of the
est approaches to non-linear calibration and fitting problem in
very field of chemistry.

mailto:kwchiang@mail.ncku.edu.tw
dx.doi.org/10.1016/j.jpowsour.2007.09.024
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Nomenclature

bk external bias
C the particle concentration in suspension
ddep the thickness of the deposit
E the error function
f Hamaker factor
L the distance from cathode to anode
M the number of output neurons
nh the number of hidden neurons
nχ the number of external inputs
N the pattern number in the training data
q the slop parameter
rdeposited resistivity of the deposited layer
rsuspension resistivity of the suspension
Vapp the applied electric voltage
Vreal the actual voltage that affects the motion of parti-

cles
w the deposited weight on the working electrode
wij, Wij the weight links
yh
j output from jth hidden neuron

ypq the desired output value of neuron q in the output
layer for the training data

ŷpq the real output value of neuron q in the output
layer for the training data

Greek symbols
α the learning rate
β the constant that is added to the weight correction

to stabilize vibration in the weights
χ external inputs
ε0 the permittivity of a vacuum
εr the relative permittivity of the solvent
η the viscosity of the solvent
μ the electrophoretic mobility
θ parameter vector
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ζ the zeta potential of suspension particles
Φ, af, AF activation function

In this study, statistical experimental modeling using
NNs for yttria-stabilized zirconia (YSZ) deposition on
a0.85Sr0.15MnO3 (LSM) substrates is discussed and then com-
ared with the theoretical model proposed by others [33]. The
roposed architecture of ANNs is composed of a multilayer feed-
orward neural network with a single hidden layer and trained
ith the back-propagation algorithm modified by a genetic algo-

ithm (GA).

. Theoretical background

.1. The factors effecting EPD
The mechanisms of EPD include charged colloidal particles
n solution moving under an applied external voltage, depositing
articles onto an electrode where electrochemical reaction, i.e.

o
m
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harge transfer, takes place. Two groups of parameters determine
he characteristics of this process: (a) the specific characteristics
f the suspensions and (b) the physico-chemical parameters of
he electrochemical cells, such as the conductivity of electrodes
nd the applied voltage.

For the EPD of particles, part of the current is carried by
ither the charged particles or free ions in the solution. So the
mount of deposited particles does not depend only on the cur-
ent, and it is believed that the ions accumulated at the electrodes
estrict subsequent deposition [34]. However, the number of free
ons is generally small in organic suspensions, such as ethanol.
herefore, the influence of accumulated ions is negligible.

The first attempt to correlate the number of particles with
he parameters in EPD was proposed by Hamaker [13,14] and
ugustinik et al. [35]. Hamakers law takes the following form:

= f

∫ t1

t2

μ
Vapp

L
AC dt (1)

t relates the deposited weight (w) to the applied electric voltage
Vapp), the electrophoretic mobility (μ), the distance from cath-
de to anode (L), and the particle concentration in suspension
C). The Hamaker factor (f) is obtained by fitting experimental
ata, and its value is between 0 and 1. In the present study, the
alue of f is about 0.45 with a deviation of about 0.03.

Ishihara et al. [12], and Chen and Liu [33] used the expression
y assuming that all particles in suspension are spherical and
hat the mobility of particles could be approximated by Henry’s
quation [36]:

= f
2

3
Cε0εrζ

(
1

η

)(
Vapp

L

)
t (2)

here ε0 is the permittivity of a vacuum, εr the relative permit-
ivity of the solvent, ζ the zeta potential of suspension particles,
nd η is the viscosity of the solvent.

The applied electric field, Vapp, which affects the motion
f colloidal particles in suspension, decreases with increasing
hickness of the deposited layer. Therefore, the voltage must be

odified as [37]:

real = Vapp

(
1 − ddep

ddep + (L − ddep)rsuspension/rdeposited

)
(3)

here Vreal is the actual voltage that affects the motion of parti-
les, ddep the thickness of the deposit, and rsuspension and rdeposited
re the resistivity of the suspension and the deposited layer,
espectively. Therefore, the modified equation takes the form:

= 2

3
fCε0εrζ

(
1

η

)(
Vreal

L

)
t = 2

3
fCε0εrζ

(
t

η

)(
Vapp

L

)

×
(

1 − ddep

ddep + (L − ddep)rsuspension/rdeposited

)
(4)

.2. Introductions to ANNs
ANNs are computer programs based on a simplified model
f the brain and can be applied to map the relationships of
ultivariate data. There are several types of neural network
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Fig. 1. A schematic of

rchitectures, but the most common one is the multilayer
eed-forward neural network. Generally speaking, the structure
f a multilayer feed-forward neural network is constructed from
mall processing units (neurons) that are interconnected within
he network using weighted links. In general, the basic model
f the neuron contains three major components: (a) weight links
wj,l, Wi,j〉; (b) an adder (additive function) for summing the
nput signals χi that are weighted by respective synapses of the
euron and external bias (bk); and (c) an activation function ϕ(·)
or limiting the amplitude of the neuron output and the final
utput yk. Fig. 1 depicts a feed-forward network which contains
xternal inputs (χ1, χ2, χ3), a hidden layer with two hidden neu-
ons, and an output layer with two output neurons. The depicted
etwork is said to be fully connected since all inputs/neurons in
ne layer are connected to all neurons in the following layer.

The mathematical formula expressing what is happening in
he network takes the form:

ˆ i(t) = f̂ (χ, θ)

= AFi

⎡
⎣ nh∑

j=1

Wi,j afj

( nφ∑
l=1

wj,lχl + wj,0

)
+ Wi,0

⎤
⎦ (5)
specifies the parameter vector, which contains all the
djustable parameters of the network; i.e., the weights and biases
wj,l, Wi,j〉. Since the bias can be interpreted as a weight acting
n an input clamped to 1; i.e., b1, b2 = 1, the joint description

t
u
s
m

yh
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

1,

−q

( nφ∑
l=1

wj,lχl + w

A

chitecture of an ANN.

weight ” covers both weights and bias. To determine the weight
alues, one must have a set of examples of how the outputs,

ˆ i, should relate to the inputs χl. The process of obtaining the
eights from these examples is called supervised learning and is
asically a conventional estimation process. That is, the weights
re estimated from existing examples in such a way that the net-
ork, according to some metric, models the true relationship as

ccurately as possible. In Fig. 1, af(·) and AF(·) represent the
ctivation functions for hidden neurons and output neurons. In
his study, a non-linear activation function is utilized at the hid-
en neurons so that the non-linearities can enhance the network’s
pproximation capabilities and reduce the impact of noise. A
inear activation function is applied at the output layer neurons.
uch combinations, one non-linear hidden layer and a linear
utput layer, have shown the ability to approximate any differ-
ntiable function [38]. The sigmoid activation function, which
as used in the hidden layer, takes the form:

h
j = 1

1 + exp
[−q

(∑nφ
l=1wj,lχl + wj,0

)] , j = 1, nh (6)

hereyh
j represents the output of the jth hidden neuron, q the slop

arameter, nφ the number of external inputs, and nh represents
he number of hidden neurons. The linear activation function
sed in the output layer was the linear sigmoid function, which
ubstitutes the intermediate portion of the sigmoid by a line,
aking it a piecewise linear approximation of the sigmoid:

−q

( nφ∑
l=1

wj,lχl + wj,0

)
< 0

−q

( nφ∑
l=1

wj,lχl + wj,0

)
> 1 (j = 1, nh)

)
(7)
j,0 , else

detailed description of ANNs can be found in Ref. [20].
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Many learning algorithms can be used for training ANNs.
he most frequently used algorithm is called back-propagation.
he solution of the weights in feed-forward neural networks is a
ultivariate optimization problem where the connective weights

re the variables to be optimized with cost functions equal to the
um of squared residual errors. In general, the error function (E)
akes the form:

= 1

2

N∑
p=1

Ek = 1

2

N∑
p=1

M∑
q=1

(ypq − ŷpq) (8)

here ypq is the desired output value of neuron q in the output
ayer for the training data and ŷpq the real output, N the pat-
ern number in the training data and M is the number of output
eurons. The weights are modified by the following expression:

ij(k + 1) = wij + α

(
∂E

∂wij

)
w=w(jk)

+β[(wij(k) − wij(k − 1)] (9)

here α is the learning rate and β is a constant that is added
o the weight correction to stabilize the vibration in the weights
hat occurs in the learning process. A more detailed discussion
f the theory can be found in Ref. [39].

Some studies have combined both ANN and GA to model
harmaceutical processes [40]. Because ANNs consist of several
ariables, such as the number of layers, the number of neurons
n each layer, and the values of weights, GA can be applied to
ptimize the calculation process of ANNs and to avoid the local
inimum.
GA is used to search the solution space through the simu-

ated evolution of generations of the fittest. These are used to
olve linear and non-linear problems by exploring all regions
f the state space and developing obscured areas through muta-
ion, crossover, and selection operations applied to individuals
n the population [41–43]. The procedure of GA includes: chro-

osome representation, a selection function, a mutation and

rossover for the reproduction function, the formation of the ini-
ial population, termination criteria, and the evaluation function,
s depicted in Fig. 2.

Fig. 2. Schematic representation of GA optimization.
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. Experimental procedure

.1. Preparation of the LSM substrate

LSM powders were prepared by the precursors La2O3 (Alfa),
nO2 (Aldrich), and Sr(NO3)2 (Aldrich). The stoichiometerical

mounts of those precursors were mixed with ethanol (99.8%
eagent grade, Kanto Chemicals, Tokyo, Japan). Afterward, the
owders were milled, sieved, and calcined at 800 ◦C. Then, the
alcined powders were pressed into the shape of a disk, and
intered at 1400 ◦C. The diameter of the LSM-disk after heat
reatment was about 10 mm.

.2. YSZ suspension for EPD

Suspensions with 0.1 vol% fraction of solid loads were con-
isted of ethanol (99.8% reagent grade, Kanto Chemicals, Tokyo,
apan) and the YSZ powder (TZ-8Y, Tosho). The YSZ pow-
er must be washed in EtOH and H2O by centrifuging before
reparing the suspension until the conductivity of the solution
as close to zero. The powder was dispersed in suspension using

n ultrasonic horn (DC400H, Delta) for 30 min, and the pH was
djusted to 4.03 using acetic acid (Fluka).

.3. EPD YSZ on the LSM substrate

For the EPD process, a carbon electrode was used as the anode
nd the prepared LSM-disk as the cathode, which was connected
o a balance (Mettler 6900). The electrodes were set parallel to
ach other with a separation distance of 3 cm, and immersed into
he YSZ suspension, which was kept at a constant temperature
f 25 ◦C. A pH meter (TDK-5721S) was used to measure the
H variation during the entire process. The YSZ coatings were
eposited at constant voltages of 10, 12.5, 15, 40, and 50 V,
espectively. The deposition time was from 3 to 10 min.

.4. Creation of the ANN model

A multilayer feed-forward neural network with a single hid-
en layer, as shown in Fig. 3, is proposed. The input parameters
re the current density of the cathode, working temperature, pH,
pplied voltage, and deposition time. These inputs are passed

orward to produce the outputs, which are the weight densities
f deposited YSZ on the LSM electrode (per square centimeter).
o optimize the network, a back-propagation algorithm modified
y GA was used to train the ANNs.

Fig. 3. ANN for the performance map of EPD.
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Table 1
Parameter values in the theoretical model based on Eq. (4)

Description Notation Unit Value

Initial concentration of YSZ C∗
YSZ g l−1 3.96 × 10−9

Viscosity of ethanol η Pa s 1.074 × 10−3

Distance between the cathode
and anode

L m 3 × 10−2

Zeta potential of YSZ �p mV 40.3
The actual voltage that affects

the motion of colloidal
particles

Vapp V 10, 12.5, 15 40, 50

Dielectric constant of vacuum ε0 C2 N−1 m−2 8.854 × 10−12

Relative dielectric constant of
the pure ethanol

εr NaN 24.3

w
d
0
m
able to describe the behavior of EPD at a low-applied voltage
(10, 12.5 and 15 V). However, the standard deviation for the
theoretical model increased with increasing applied voltage; the
42 S.-J. Ciou et al. / Journal of P

.5. Data pre-processing for training

The training examples have to be uniformly distributed
hroughout the operation range to achieve reasonable training as
ell as acceptable prediction accuracy; therefore, the training
atterns must be selected carefully. Because of variation in the
cale of inputs, the inputs were normalized from 0 to 1 to allow
n efficient and correct training procedure. Generally speaking,
re-processed data improves the homogeneity of the parameters,
hich avoids neglecting values, which may be decisive to the
verall performance of the proposed scheme.

.6. The training process

The experimental data for training the ANNs was inputted
epeatedly until the desired goal was reached. When the net-
ork finishes learning, the training error will converge to zero.
owever, smaller training error does not necessarily imply a bet-

er network prediction accuracy when new input data is applied.
f the training error threshold is set to be too small, it is possible
o over-train a network. As a result, the prediction accuracy of
ew and omitted inputs deteriorates. To avoid this predicament,
ross-validation, which is a popular criterion to prevent over-
raining, was used in this study [44]. As a result, 50 sets of data
ere picked from each recorded experimental result, represent-

ng EPD at 10, 12.5, 15, 40, and 50 V, respectively, as testing
ata. The remaining sets were separated into 90% and 10% as the
raining and cross-validation data, respectively. Because there
as no prior information about a suitable ANN structure for
redicting the EPD process, an ANN model with one hidden
ayer with 25 neurons was used in the present study, and the
alues of weights were initially random. Traditionally, the num-
er of neurons in the hidden layer is decided by trial-and-error.
owever, GA can help an ANN model to decide the number of
eurons in the hidden layer. Other than the number of neurons in
he hidden layer, the adjustable parameters of the ANN model,
uch as weights, training epochs, and learning rates, were also
odified automatically by GA, with the training process contin-

ing until the desired accuracy was reached. The lowest mean
quare error (MSE) was selected as the training endpoint for all
etworks. After the proper ANN model was built, the experi-
ental data was combined with former data and processed in

he model to make the ANN model learn new information.

. Results and discussion

The parameters in the theoretical model based on Eq. (4) are
isted in Table 1, and the voltage drops of each applied voltage
re given in Fig. 4. These voltages drops were calculated based
n Eq. (3), and the thickness variation of deposited layers was
easured at regular intervals.
Figs. 5–9 show the deposited YSZ weight using EPD at 10,

2.5, 15, 40, and 50 V, respectively. The solid line represents

he experimental data; the theoretical predictions based on Eq.
4) are represented by squares dots; the diamonds represent the
NN predictions. In Figs. 5–7, it can be seen that both the theo-

etical model and the ANN model predicted the YSZ deposition
F
p

Fig. 4. The voltage variation during EPD at different applied voltages.

eight accurately. The standard deviation, which indicates the
ifference between experimental data and the predictions, was
.00030 and 0.00035 for the ANN model and the theoretical
odel, respectively. There was no doubt that both models were
ig. 5. The experimental data (—); the ANN prediction (♦); and the theoretical
rediction (�) for EPD at 10 V.
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Fig. 6. The experimental data (—); the ANN prediction (♦); and the theoretical
prediction (�) for EPD at 12.5 V.

F
p

s
F
f
i
a

F
p

Fig. 9. The experimental data (—); the ANN prediction (♦); and the theoretical
prediction (�) for EPD at 50 V.

Table 2
The standard deviation (the difference between experimental data and predic-
tion) of the theoretical and the ANN models

Standard deviation Theoretical prediction (�) ANN model (♦)

10 V 0.00035 0.00025
12.5 V 0.00034 0.00028
15 V 0.00036 0.00030
4
5

A
5
w
b
t
i

5

ig. 7. The experimental data (—); the ANN prediction (♦); and the theoretical
rediction (�) for EPD at 15 V.

tandard deviation was 0.00503 for 40 V and 0.0170 for 50 V.
or the ANN model, the standard deviation increased to 0.00196

or 40 V and 0.00673 for 50 V. The standard deviations are listed
n Table 2. Although the accuracy of both the theoretical model
nd ANN model decreased with increasing applied voltage, the

ig. 8. The experimental data (—); the ANN prediction (♦); and the theoretical
rediction (�) for EPD at 40 V.

r
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R

0 V 0.00503 0.00196
0 V 0.01701 0.00673

NN model was much better at higher applied voltages (40 and
0 V). In Figs. 8 and 9, the exponential-decay tendency of EPD,
hich is different from the linear relationship in Figs. 5–7, can
e observed. The ANN model showed a much better fit than did
he theoretical model to the behavior of EPD. The ANN model
s accurate and flexible.

. Conclusion

In the present study, the proposed ANN model and a theo-
etical model were established to predict the kinetic behavior
f EPD. Both demonstrated the ability to predict the amount of
eposited weight of YSZ accurately at applied voltages below
5 V. However, some unknowns, such as the Hamaker constant
, in the theoretical model, make it complicated to optimize the
rocess quantitatively and apply it practically. Furthermore, the
eviation at higher applied voltages, beyond 40 V, was too high
o describe the behavior of EPD precisely.

The ANN model is a powerful tool for solving system identi-
cation problems. Besides enhancing accuracy, the ANN model
howed the ability to be much more flexible in every opera-
ional condition and easier to use in this research; therefore, it
s suitable for the generation of performance maps.
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